ETERNAL CAREER CLASSES

SUBJECT : CHEMISTRY

CLASS : XII

FULL MARKS : 20

DATE: 17.12.2024

NAME :

BOARD TEST : 12 SECTION - A

Single answer type question. Attempt any seven question :-

Marks : $1 \times 7 = 7$

- 1. The formula of the complex dichloridobis (ethane-1, 2-diamine) platinum (IV) nitrate is:
 (a) [PtCl₂(en)₂(NO₃)₂]
 (b) [PtCl₂(en)₂](NO₃)₂
 (c) [PtCl₂(en)₂(NO₃)]NO₃
 - (d) $[Pt(en)_2(NO_3)_2]Cl_2$
- 2. One mole of $CrCl_3 \cdot 6H_2O$ compound reacts with excess AgNO₃ solution to yield two moles of AgCl(s). The structural formula of the compound is:
 - (a) $[Cr(H_2O)_5Cl]Cl_2 \cdot H_2O$
 - (b) $[Cr(H_2O)_5Cl_3] \cdot {}_{3}H_2 \cdot O$
 - (c) $[Cr(H_2O)_4Cl_2]Cl_2H_2O$
 - (d) $[Cr(H_2O)_6]Cl_3$
- 3. Ambidentate ligands like NO_2^- and SCN⁻ are:
 - (a) unidentate
 - (b) didentate
 - (c) polydentate
 - (d) has variable denticity
- 4. Assertion (A): Linkage isomerism arises in coordination compounds because of ambidentate ligand.
 - Reason (R): Ambidentate ligand like NO2 has two different donor atoms i.e., N and O.
 - (a) Both (A) and (R) are true and R is the correct explanation of A.
 - (b) Both (A) and (R) are true and R is not the correct explanation of A.
 - (c) (A) is true but (R) is false.
 - (d) (A) is false but (R) is true
- 5. .The crystal field splitting energy for octahedral ($\Delta 0$) and tetrahedral (Δt) complexes are related as:
 - (a) $\Delta t = 4/9\Delta 0$
 - (b) $\Delta t = 1/2\Delta 0$
 - (c) $\Delta 0 = 2\Delta t$
 - (d) $\Delta 0 = 4/9\Delta t$
- 6. The CFSE for octahedral [CoCl₆]⁴⁻ is 18,000 cm⁻¹. The CFSE for tetrahedral [CoCl₄]²⁻ will be:
 (a) 18,000 cm⁻¹
 - (b) 16,000 cm^{-1}
 - (c) $8,000 \text{ cm}^{-1}$
 - (d) 20,000 cm^{-1}
- 7. Predict the number of ions produced per formula unit in an aqueous solution of [Co(*en*)₃]Cl₃:
 (a) 4 (b) 3 (c) 6 (d) 2
- 8. What is the secondary valency of Cobalt in [(Co(en₂)Cl₂]⁺?
 (a) 6 (b) 4 (c) 2 (d) 8
- Assertion (A): [Pt(en)₂Cl₂]²⁺ complex is less stable than [Pt(NH₃)₄Cl₂]²⁺ complex. Reason (R): [Pt(en)₂Cl₂]²⁺ complex shows chelate effect.
 - (a) Both (A) and (R) are true and R is the correct explanation of A.
 - (b) Both (A) and (R) are true and R is not the correct explanation of A.
 - (c) (A) is true but (R) is false.
 - (d) (A) is false but (R) is true.

10. The coordination number of Co in the complex $[Co(en)_3]^{3+}$ is:

(b) 6	(c) 4	(d) 5	
		SECTION - B	

Short answer type question. Attempt any one question :-

11. A.Write the IUPAC names of the following:

 $[Co(NH_3)_5(ONO)]^{2+}$

(a) 3

B.What is a chelate complex? Give one example.

C. Discuss bonding, geometry and magnetic property of $[Ni(CN)_4]^{2-}$

- 12. A.What type of isomerism is exhibited by the complex [Co(NH₃)₅Cl]SO₄ ?
 - B.Draw one of the geometrical isomers of the complex $[Pt(en)_2Cl_2]^{2+}$ which is optically active.

Long answer type question. Attempt any two question :-

13. A.For the complex $[Fe(H_2O)_6]^{3+}$, write the hybridization, magnetic character and spin of the complex.

[At. number of Fe = 26]

B.Write the state of hybridisation, shape and IUPAC name of the following complex: $[Ni(CN)_4]^{2^-}$

14. A.Why is $[NiCl_4]^{2-}$ is paramagnetic but $[Ni(CO)_4]$ is diamagnetic?

B.Why a solution of $[Ni^{(}(H_2O)_6]^{2+}$ is green while a solution of $[Ni(CN)_4]^{2-}$ is colourless? 15. A.Why are low spin tetrahedral complex rarely observed?

B.Two complex is given as $[CoF_6]^{3-}$ and $[Co(C_2O_4)_3]^{3-}$, which one complex is:

- (A) diamagnetic
- (B) more stable
- (C) outer orbital complex and
- (D) low spin complex?

[Atomic no. of Co = 27]

Marks : $1 \times 3 = 3$

Marks : 2 \times 5 = 10