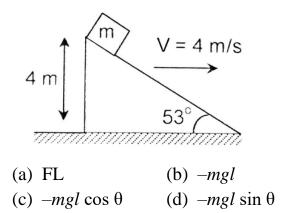


SUBJECT : PHYSICS (Work, Power and Energy)

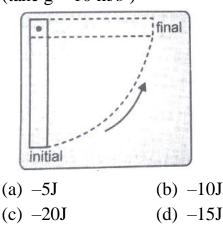
- 1. A position dependent force $F = (7 2x + 3x^2)$ N acts on a small body of mass 2kg and displaces it from x = 0 to x = 5m. Work done in joule is :
 - (a) 35 (b) 70
 - (c) 135 (d) 270
- A uniform force of (3i + j) newton acts on a particle of mass 2kg. Hence, the particle is displaced from position (2i + k) metre to position (4i + 3j + k) metre. The work done by the force on the particle is :
 - (a) 9 J (b) 6 J
 - (c) 13 J (d) 15 J
- 3. A force $(3\hat{i} + 4\hat{j})$ newton acts on a body and displaced it by $(3\hat{i} + 4\hat{j})$ metre. The work done by the force is :
 - (a) 5 J (b) 25 J (c) 20 J
 - (c) 10 J (d) 30 J
- 4. How much work is required to raise a stone of mass 5kg and relative density 3, lying at the bed of a lake, through height of 3 m ?
 - (a) 25 J (b) 40 J

5. A particle moves under the effect of a force $F = kx^2$ from x = 0 to x = 4, the work done by the force is :


(a)
$$\frac{8k}{3}$$
 (b) $\frac{32k}{3}$
(c) $\frac{64k}{3}$ (d) $\frac{128k}{3}$

6. A body constrained to move in the ydirection is subjected to a force $F = (2\hat{\imath} + 15\hat{j} + 6\hat{k})$ N. The work done by this force, in moving the body through a distance of 10 m along y-axis is :

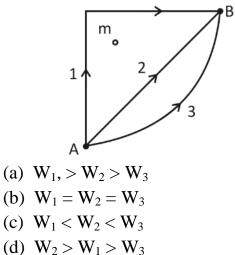
7. A small block of mass *m* is kept on a rough inclined surface of inclination θ fixed in an elevator. The elevator goes up with uniform velocity *v* and the block does not slide on the wedge. The work done by the force of friction on the block in time *t* in the ground frame is :


(a) zero (b) $mgvt\cos^2\theta$

- (c) $mgvt\sin^2\theta$ (d) $mgvt\sin2\theta$
- 8. A block is raised to the top of an inclined plane from its bottom as shown in figure. The work done by gravity in this process is :

<u>NEET</u>

9. A uniform metal rod of 2 kg is hinged at one end and is rotated by 90° anticlock wise as shown. Find the work done by the gravity in this process : (take g = 10 m/s²)


- 10. A bob of mass 'm' is released from angle θ with vertical as shown in figure. Find the work done by gravity when pendulum stop vibrating :
 - (a) *mgL*
 - (b) $mgL\cos\theta$
 - (c) $mgL\sin\theta$
 - (d) $mgL(1-\cos\theta)$
- 11. The work done against gravity in taking 10 kg mass at 1 m height in 1 sec will be :
 - (a) 49 J (b) 98 J

- 12. A force $\vec{F} = 6\hat{\imath} + 2\hat{\jmath} 3\hat{k}$ acts on a particle and produces a displacement of $\vec{s} = 2\hat{\imath} 3\hat{\jmath} + sk$. If the work done is zero, the value of x is :
 - (a) -2 (b) 1/2
 - (c) 6 (d) 2
- 13. A particle moves from position $\vec{r_1} = 3\hat{\imath} + 2\hat{\jmath} 6\hat{k}$ to position $\vec{r_2} = 14\hat{\imath} + 13\hat{\jmath} 9\hat{k}$ unde the action of force $4\hat{\imath} + \hat{\jmath} 3\hat{k}$ N. The work done will be : (a) 100 J (b) 50 J

- (c) 200 J (d) 75 J
- 14. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle, the motion of the particle takes place in a plane. It follows that
 - (a) its velocity is constant
 - (b) its acceleration is constant
 - (c) its kinetic energy is constant
 - (d) it moves in a straight line
- **15.** A ball is released from the top of a tower. The ratio of work done by force of gravity in first, second and third second of the motion of the ball is :
 - (a) 1:2:3 (b) 1:4:9
 - (c) 1:3:5 (d) 1:5:3
- 16. A cord is used to lower vertically a block of mass M by a distance d with constant downward acceleration g/2. Work done by the cord by the cord on the block is :

(a)
$$Mg\frac{d}{4}$$
 (b) $3Mg\frac{d}{4}$
(c) $-3Mg\frac{d}{4}$ (d) Mgd

17. If W_1 , W_2 and W_3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass *m*, find the correct relation between *W*, W_2 and W_3

Page | 2

ETERNAL CAREER CLASSES

:

- 18. A force $F = (5\hat{\imath} + 3\hat{j})$ newton is applied over a particle which displaces it from its origin to the point $r = (2\hat{\imath} - 1\hat{j})$ metres. The work on the particle is : (a) -7 joules (b) +13 joules
 - (c) +7 joules (d) +11 joules
- 19. A body of mass 10 kg is dropped to the ground from a height of 10 metres. The work done by the gravitational force is
 - (a) -490 joules (b) +490 joules
 - (c) -980 joules (d) +980 joules
- 20. An elastic string of unstretched length L and force constant k is stretched by a small length x. It is further stretch by small length y. The work done in the second stretching is :

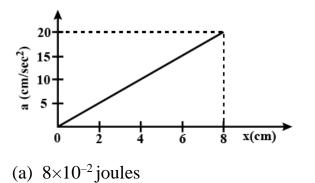
(a)
$$\left(\frac{1}{2}\right)ky^2$$

(b) $\left(\frac{1}{2}\right)k(x^2 - y^2)$
(c) $\left(\frac{1}{2}\right)k(x - y)^2$
(d) $\left(\frac{1}{2}\right)ky(2x - y)$

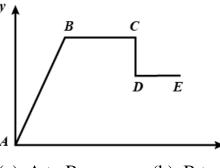
21. When a rubber-band is stretched by a distance *x*, it exertes a restoring force of magnitude $F = ax + bx^2$ where *a* and *b* are constants. The work done in stretching the unstretched rubber-band by L is :


(a)
$$\frac{1}{2} \left(\frac{aL^2}{2} + \frac{bL^3}{3} \right)$$
 (b) $aL^2 + bL^3$
(c) $\frac{1}{2} \left(aL^2 + bL^3 \right)$ (d) $\frac{aL^2}{2} + \frac{bL^3}{3}$

- 22. The potential energy of a certain spring when stretched through a distance 'S' is 10 joule. The amount of work (in joule) that must be done on this spring to stretch it through an additional distance 'S' will be :
 - (a) 30 (b) 40
 - (c) 10 (d) 20


- 23. A position dependent force $F = 7 2x + 3x^2$ N acts on a small body of mass 2kg and displaces it from x = 0 to x 5m. The work done in joules is :
 - (a) 70
 (b) 270
 (c) 35
 (d) 135
- 24. The force constant of a wire is k and that of another wire is 2k. When both the wires are stretched through same distance, then the work done
 - (a) $W_2 = 2W_1^2$ (b) $W_2 = 2W_1$

(c)
$$W_2 = W_1$$
 (d) $W_2 = 0.5W_1$


- **25.** A spring of force constant 800 N/m has as extension of 5cm. The work done in extending it from 5cm to 15 cm is :
 - (a) 16 J (b) 8 J
 - (c) 32 J (d) 24 J
- 26. Adjacent figure shows the forcedisplacement graph of a moving body, the work done in displacing body from x = 0 to x = 35 *m* is equal to :

27. A 10 kg mass moves along *x*-axis. Its acceleration as a function of its position is shown in the figure. What is the total work done on the mass by the force as the mass moves from x = 0 to x = 8 cm

- (b) 16×10^{-2} joules
- (c) 4×10^{-4} joules
- (d) 1.6×10^{-3} joules
- 28. The adjoining diagram shows the velocity versus time plot for a particle. The work done by the force on the particle is positive from

- (a) A to B (b) B to C
- (c) C to D (d) D to E
- **29.** Two springs have their force constant as k_1 and k_2 ($k_1 > k_2$). When they are stretched by the same force

- (a) No work is done in case of both the springs
- (b) Equal work is done in case of both the springs
- (c) More work is done in case of second spring

(d) More work is done in case of first spring

30. A body of mass 5 kg is placed at the origin, and can move only on the *x*-axis. A force of 10 N is acting on it in a direction making an angle of 60° with the *x*-axis and displaces it along the *x*-axis by 4 metres. The work done by the force is :

(a)	2.5 J	(b)	7.25 J

(c) 40 J (d) 20 J
