

- 1. Which one of the following pairs of compounds illustrates the law of multiple proportions?
 - (a) H_2O , Na_2O
- (b) MgO, Na₂O
- (c) Na₂O, BaO
- (d) SnCl₂, SnCl₄
- 2. 2.5 g of a gas occupy the same volume that is occupied by 1 g of O_2 gas under the similar conditions. The gas is:-
 - (a) CH₄
- (b) SO_3
- (c) N_2O_4
- (d) SO_2
- **3.** How many atom are there in 80 amu of CH₄?
 - (a) $25 \times N_A$
- (b) 25
- (c) $5/N_A$
- (d) 5
- 4. Calculate percentage of C in $C_6H_{12}O_6$ (Mol.wt =180)
 - (a) 40%
- (b) 46.66%
- (c) 38.22%
- (d) 53.33%
- Number of molecules in 4.8 gm O₃ gas:
 - (a) 6.02×10^{23}
- (b) 6.02×10^{21}
- (c) 60.2×10^{21}
- (d) 0.602×10^{22}
- 6. 10 L of H₂ gas reacts with 5 L of O₂ gas the volume of water vapour produced is
 - (a) 10 L
- (b) 5 L
- (c) 20 L
- (d) 15 L
- 7. 100mL of $PH_3(g)$ on decomposition produces P(s) and $H_2(g)$. The change in volume is :
 - (a) 50 mL increase
 - (b) 500 mL decrease
 - (c) 900 mL decrease
 - (d) 200 mL increase

- **8.** Actual mass of hydrogen molecule is approximately:
 - (a) 1.66×10^{-24} g
- (b) 3.3×10^{-24} g
- (c) 2 g
- (d) 0.8×10^{-24} g
- 9. Calculate the weight of lime (CaO) obtained by heating 200 kg of 95% pure limestone (CaCO₃):
 - (a) 104.4 kg
- (b) 105.4 kg
- (c) 212.8 kg
- (d) 106.4 kg
- 10. What amount will remain uncreacted after the reaction between 3g carbon and 2g oxygen to produce CO.
 - (a) 1.5 g C
- (b) 0.5 g O_2
- (c) $1 g O_2$
- (d) 0.5 g C
- 11. A compound contains equal mass % of element A, B and C. If atomic masses of A, B and C are 20, 40 and 60 respectively, the empirical formula of compound is:
 - (a) A_3B_2C
- (b) AB_2C_3
- (c) ABC
- (d) $A_6B_3C_2$
- 12. Weight of gas of NH₃ present in a flask if number of molecules of NH₃ gas are 3.01×10^{23} :
 - (a) 17 gm
- (b) 9.5 gm
- (c) 8.5 gm
- (d) 34 gm
- 13. 0.3 L of a gaseous hydrocarbon burns with O_2 to produce 1.2 L $CO_{2(g)}$ and 1.5 L $H_2O_{(g)}$. Hydrocarbon is :
 - (a) C_2H_6
- (b) C_2H_4
- (c) C_3H_8
- (d) $C4H_{10}$
- 14. For a reaction $2A + 3B \rightarrow 2C$. The amount of C formed by starting the reaction with 4 moles of A and 12 moles of B is:

- (a) 8 mol
- (b) 4 mol
- (c) 2 mol
- (d) 1 mol
- 15. A reaction occur between 6 moles of H_2 and 1.5 moles of O_2 to give some amount of H_2O . The limiting reagent in this reaction will be. $2H_2 + O_2 \rightarrow 2H_2O$
 - (a) H₂ and O₂ both
 - (b) O₂
 - (c) H₂
 - (d) Neither of them
- 16. Boron has two stable isotopes, ¹⁰B(19%) and ¹¹B (81%). The atomic mass that should appear for boron in the periodic table is:
 - (a) 10.8
- (b) 10.2
- (c) 11.2
- (d) 10.0
- 17. A sample of pure carbon dioxide, irrespective of its source contains 27.27% carbon and 72.73% oxygen. The data support:
 - (a) Law of constant composition
 - (b) Law of conservation of mass
 - (c) Law of reciprocal proportions
 - (d) Law of multiple proportions
- 18. The number of moles of oxygen in 1 L of air containing 21% oxygen by volume, in standard conditions, is:
 - (a) 0.186 moles
- (b) 0.21 mole
- (c) 2.10 mole
- (d) 0.0093 mole
- 19. Haemoglobin contains 0.33% of iron by mass. The molecular mass of haemoglobin is approximately 67200. The number of iron atoms (At. Mass of Fe = 56) present in one molecule of haemoglobin is:
 - (a) 6
- (b) 1
- (c) 4
- (d) 2
- 20. If 0.30 mole of CaCl₂ is mixed with 0.20 mole of Na₃PO₄, the maximum number of moles of Ca₃(PO₄)₂ which can be formed, is:

- (a) 0.70
- (b) 0.50
- (c) 0.20
- (d) 0.10
- **21.** The number of atoms in 4.25 g of NH₃ is approximately:
 - (a) 1×10^{23}
- (b) 2×10^{23}
- (c) 4×10^{23}
- (d) 6×10^{23}
- 22. The mass of a molecule of the compound $C_{60}H_{122}$ is :
 - (a) 1.4×10^{-21} g
- (b) 1.09×10^{-21} g
- (c) 5.025×10^{23} g
- (d) 16.023×10^{23} g
- **23.** The modern atomic mass scale is based on :
 - (a) C^{12}
- (b) O^{16}
- (c) H¹
- (d) C^{13}
- 24. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 of HCl?
 - (a) 0.011
- (b) 0.029
- (c) 0.044
- (d) 0.333
- **25.** Which has the maximum number of molecules among the following?
 - (a) 44 g CO₂
- (b) $48 g O_3$
- (c) 8 g H₂
- (d) 64 g SO₂
- **26.** Acidified K₂Cr₂O₇ solution turns green when Na₂SO₃ is added to it. This is due to the formation of :
 - (a) $Cr_2(SO_4)_3$
- (b) CrO_4^{2-}
- (c) $Cr_2(SO_3)_3$
- (d) CrSO₄
- 27. The total number of electrons in 18 mL of water (density = $1g \text{ mL}^{-1}$) is :
 - (a) 6.02×10^{23}
- (b) 6.02×10^{25}
- (c) 6.02×10^{24}
- (d) 6.02×18^{23}
- **28.** Avogadro number (6.023×10^{23}) of carbon atoms are present in :
 - (a) $12 \text{ grams of } ^{12}\text{CO}_2$
 - (b) 22.4 litre ¹²CO₂ in room temperature
 - (c) 44 grams of $^{12}CO_2$
 - (d) 12 moles of ¹²CO₂
- **29.** When 22.4 litres of $H_2(g)$ is mixed with 11.2 litres of $Cl_2(g)$. each at STP, the moles of HCl(g) formed is equal to :

- (a) 0.5 mol of HCl(g)
- (b) 1.5 mole of HCl(g)
- (c) 1 mol of HCl(g)
- (d) 2 mol of HCl(g)
- **30.** Which one of the following has maximum number of molecule?

 - (a) $16 \text{ g of } O_2$ (b) $16 \text{ g of } NO_2$
 - (c) $4 g of N_2$
- (d) $32 \text{ g of } N_2$
- *31*. The number of moles of hydrogen molecules required to produce 20 moles ammonia through Haber's process is:
 - (a) 10
- (b) 20
- (c) 30
- (d) 40
- The equivalent mass of MnSO₄ is half *32*. its molecular mass when it is converted to:
 - (a) Mn_2O_3
- (b) MnO₂
- (c) MnO₄
- (d) MnO_4^{2-}
- 33. The oxide which cannot act as a reducing agent is:
 - (a) SO_2
- (b) NO₂
- (c) CO_2
- (d) ClO₂
- *34.* What is the average oxidation number of sulphur in Na₂S₄O₆?
 - (a) $\frac{2}{3}$
- (b) $\frac{3}{2}$
- (c) $\frac{3}{5}$
- 35. Oxidation state of Fe in Fe₃O₄ is:
 - (a) $\frac{3}{2}$

- (d) $\frac{8}{3}$
- A compound contains atoms of three elements in A, B and C. If the oxidation number of A is +2, B is +5 and that of C is -2, the possible formula of the compound is:
 - (a) $A_3(BC_4)_2$
- (b) $A_3(B_4C)_2$
- (c) ABC_2
- (d) $A_2(BC_3)_2$
- The valency of Cr in the complex $[Cr(H_2O)_4Cl_2]+ is:$
 - (a) 1
- (b) 3
- (c) 5
- (d) 6

- 38. Which of the following reactions involves oxidation reduction?
 - (a) $NaBr + HCl \rightarrow NaCl + HBr$
 - (b) $HBr + AgNO_3 \rightarrow AgBr + HNO_3$
 - (c) $H_2 + Br_2 \rightarrow 2HBr$
 - (d) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 +$ $2H_2O$
- 39. If HNO_3 changes into N_2O , the oxidation number is changed by:
 - (a) +2
- (b) -1
- (c) 0
- (d) +4
- 40. Oxidation number of oxygen in ozone (O_3) is:
 - (a) +3
- (b) -3
- (c) -2
- (d) 0
- 41. In the conversion $Br_2 \rightarrow BrO_3^-$, the oxidation state of bromine changes from:
 - (a) -1 to -1
- (b) 0 to -1
- (c) 0 to +5
- (d) 0 to -5
- 42. The number of moles of KMnO₄ reduced by one mole of KI in alkaline medium is:
 - (a) one fifth
- (b) five
- (c) one
- (d) two
- 43. Oxidation number of nitrogen in NaNO₂ is:
 - (a) +2
- (b) +3
- (c) +4
- (d) -3
- The number of moles of KMnO₄ that will be needed to react with one mole of sulphide ion in acidic solution is:
 - (a) $\frac{3}{5}$

- *45*. The oxidation states of iodine in HIO₄, H₃IO₅ and H₅IO₆ are, respectively:
 - (a) +1, +3, 7
- (b) +7, +7, +3
- (c) +7, +7, +7 (d) +7, +5, +3

- **46.** Number of moles of MnO_4^- required to oxidize one mole of ferrous oxalate completely in acidic medium will be:
 - (a) 7.5 moles
- (b) 0.2 mole
- (c) 0.6 mole
- (d) 0.4 mole
- **47.** 100 mL of PH₃ on decomposition produced phosphorus and hydrogen. The change in volume is:
 - (a) 50 mL increase
 - (b) 500 mL decrease
 - (c) 900 mL decrease
 - (d) nil
- **48.** During the conversion of $NH_2OH \rightarrow N_2O$, the equivalent mass of NH_2OH is : (mol. Mass of NH_2OH is M)
 - (a) M
- (b) M/2
- (c) M/4
- (d) M/5
- **49.** The oxidation state of phosphorous in cyclo-trimetaphosphoric acid is:
 - (a) +3
- (b) +5
- (c) -3
- (d) +2
- **50.** A bivalent metal has an equivalent mass of 32. The molecular mass of the metal nitrate is:
 - (a) 168
- (b) 192
- (c) 188
- (d) 182